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Summary

The use of neural networks to minimize the amount of
data required to completely define the aerodynamic
performance of a wind tunnel model is examined. The
accuracy requirements for commercial wind tunnel test
data are very severe and are difficult to reproduce using
neural networks. For the current work, multiple input,
single output networks were trained using a Levenberg-
Marquardt algorithm for each of the aerodynamic coef-
ficients. When applied to the aerodynamics of a 55%
scale model of a U.S. Air Force/NASA generic fighter
configuration, this scheme provided accurate models of
the lift, drag, and pitching-moment coefficients. Using
only 50% of the data acquired during the wind tunnel test,
the trained neural network had a predictive accuracy
equal to or better than the accuracy of the experimental
measurements.

Nomenclature

c wing reference chord length

CD drag coefficient, D/(qS)

CL section lift coefficient, L/(qS)

CM pitching-moment coefficient, M/(qSc)

D drag force

L lift force

L/D lift-to-drag ratio, CL/CD

LEF leading-edge flap deflection angle

M pitching moment

q dynamic pressure, (ρV2)/2

S wing reference area

TEF Trailing-edge flap deflection angle

V velocity

Subscripts

err root-mean-square (rms) error

max maximum

*Danish Technical University, Institute of Automation, Lyngby,
Denmark.

Introduction

Wind tunnel testing is an integral part of the design of all
airplanes (as well as most automobiles and trucks). Since
the aerodynamic performance of an airplane is nonlinear
due to the effects of viscosity, there is a need to test a
large number of conditions and geometries. Test param-
eters typically include such things as control-surface
and/or high-lift system deflections, variation in the angles
of attack and sideslip, and velocity (Mach number)
variations. The result is a long and expensive test program
with a large amount of data to sort through and interpret.
Subsequent analysis of the data is time consuming,
typically consisting of a large number of cross plots to
develop an understanding of how all of the geometric
variations change the aerodynamic forces and moments as
a function of angles of attack and sideslip. The resulting
aerodynamic database is used to analyze the airplane’s
performance throughout its operating envelope as well as
in-flight simulations to assess handling qualities before
the airplane is built. Because of the large expense
associated with wind tunnel testing and the subsequent
analysis of the aerodynamic data, technologies which
reduce these costs (without sacrificing accuracy) can
significantly increase the profitability of a new airplane.

Simply stated, the problem that we addressed is how to
reduce the amount of wind tunnel data required to com-
pletely define the aerodynamic performance of a given
model to the desired accuracy. The ability of neural
networks to accurately learn highly nonlinear, multiple
input/output relationships makes this a promising
technique for modeling of aerodynamic test data. This
sort of curve (or surface) fitting offers the most likely
path to minimizing data requirements.

There has been considerable interest recently in aero-
nautical applications of neural networks. In an early
study, Schreck and Faller (ref. 1) successfully trained a
neural network to predict the unsteady pressure variations
on a pitching wing. This work demonstrated the net-
work’s capability to learn the behavior of a highly
nonlinear aerodynamic system. Other applications have
since been reported for characterizing flight-test data
(refs. 2 and 3). Neural networks have also been applied to
flight controls for defining control laws (refs. 4 and 5)
and for updating control laws when aircraft performance
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changes during flight (e.g., due to damage to an airplane
in flight) (ref. 6).

The current study was undertaken to directly examine
how much wind tunnel data are required in order to train
a neural network to predict the aerodynamic performance
of a fighter configuration with an accuracy comparable to
the experimental accuracy. Complete descriptions of the
operation of neural networks are available in many refer-
ences (see ref. 7). In general, the type of network we used
(multilayer perceptron) consists of a number of nodes
(often referred to as neurons) arranged in layers. A sketch
of a simple network is shown in figure 1. The input nodes
pass the input data to the hidden layer of nodes, each of
which apply a nonlinear transfer function to the weighted
sum of the inputs and pass along the result to the output
layer with its own set of weighting factors. A network can
contain any number of input, hidden, and output nodes.
There may also be more than one hidden layer of nodes.
This form of neural network is capable of approximating
any continuously differentiable function (ref. 7).

The values for the individual weighting factors are
determined by means of a training procedure in which
many sets of inputs with known outputs are fed to the
input layer. The weighting factors are adjusted iteratively
to minimize the errors in the outputs (difference between
the computed and known values). Many algorithms are
available to adjust the weighting factors. Once trained, the
network can then compute outputs to sets of inputs that it
has not been trained on. If the training is successful, the
outputs accurately predict the behavior of the system for
any inputs.

The work described in this paper was undertaken with
the goal of minimizing the amount of data required from
wind tunnel tests. The idea is that while a test is in
progress, a neural network is trained using the aero-
dynamic data as they are obtained. The network then
predicts the results of the next run with different
geometry or test conditions based on the “knowledge”
that it has obtained up to that point. To be effective, the
network must gain sufficient knowledge about the model
so that the predictions match the measured results to
within the accuracy of the measured wind tunnel data
before the entire test matrix has been run. With this
trained network, the aerodynamics of the model can be
computed for both tested and untested conditions.

There are numerous other uses of a neural network trained
to compute aerodynamics. For example, trained neural
networks would provide a very simple way to interrogate
an experimental database. This ability eliminates the need
to interpolate the data across numerous variables. The
network computations can be done using a desktop PC
without using the aerodynamic database at all. Only the

weighting factors need to be stored by the computer along
with the information concerning the architecture of the
trained network. The trained network model can be
programmed (e.g., in C) and linked to any desired
analysis or optimization code. Such a capability has
obvious benefits for sharing data between various groups
and when rapid computation of aerodynamic forces and
moments are required for flight-simulation tasks.

Neural-network modeling can also identify bad or
unexpected data during a wind tunnel or other kind of
test. As measurements are compared with neural-network
predictions, anomalies become readily apparent and
test parameters can be modified to check whether the
measurements are in error or the network needs additional
training. The modeling capability can also facilitate
tailoring the test matrix to increase the density of the test
matrix where required. Areas of high gradients may be
made more apparent during a test by use of the neural
network than by other analyses of the data.

This paper describes the application of a particular neural-
network methodology to modeling the aerodynamics of a
large-scale wind tunnel model. The Subsonic High-Alpha
Research Concept (SHARC) program was conducted
jointly by the U.S. Air Force Wright Aeronautical
Laboratory and NASA in the 40- by 80-Foot Wind
Tunnel at NASA Ames Research Center. The program
tested both 10% and 55% scale models of a generic
advanced fighter aircraft (fig. 2) (refs. 8 and 9). The test
program included the determination of the flap scheduling
(leading and trailing edge) that gave the highest lift-to-
drag ratio over the maneuver angle-of-attack range. In
order to accomplish such a task, a large number of flap-
deflection combinations had to be tested. This large set of
aerodynamic data provided an excellent opportunity to
examine the capabilities of the neural-network methods,
particularly regarding the ability to obtain very high
levels of modeling accuracy with limited training data.
The work presented here is for the 55% scale model
results.

Approach

Previous publications present details of the neural method
used here to model aerodynamics (see ref. 10). In sum-
mary, individual 3-input, 1-output networks were used to
model each of the desired aerodynamic coefficients. A
Levenberg-Marquardt training scheme was used because
it provided better accuracy than the more prevalent back-
propagation training method. The single output networks
for each of the aerodynamic coefficients provided more
accurate modeling than multiple-output networks. The
need for individual networks for modeling aerodynamic
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coefficients was also reported by McMillen et al. (ref. 2).
A sketch of the network architecture used for the present
study is shown in figure 3. In general, an increase in both
the number of nodes in a given hidden layer and in the
number of hidden layers in a neural network increases the
accuracy of modeling nonlinear systems. For the work
presented here, 15 nodes in a single hidden layer proved
to be sufficient.

The three independent variables for this study were the
leading- and trailing-edge flap deflection angles (LEF and
TEF) and the angle of attack (α). The outputs were lift,
drag, and pitching-moment coefficients (CL, CD, and
CM) and lift-to-drag ratio (L/D), which required a total
of four networks. It is not strictly necessary to model
L/D since the information is simply the ratio of CL to
CD. Since L/D was an important parameter for the wind
tunnel test, it was computed directly to increase the
accuracy (errors are compounded when L/D is computed
from CL and CD).

The ranges of the input parameters examined during the
wind tunnel test were as follows: α  from –4° to 30° in
various steps; LEF of 0°, 10°, 20°, 30°, and 34°; and TEF
of 0°, 10°, 20°, and 30°. This gives a total of 20 flap
configurations in the basic test matrix. Two other
configurations were tested that are not shown in the
matrix: LEF/TEF = 15°/10° and LEF/TEF = 30°/11.5°.
These two configurations were not included in the
training of the neural networks but were used to assess
the accuracy of the network predictions.

In order to determine the amount of data required to
accurately train the networks, several different subsets
(training sets) of the data were generated that included
limited numbers of the flap configurations. Each time a
flap configuration was tested, measurements were made
at several angles of attack but not necessarily at the same
angles. The number of angles of attack also varied for
each flap configuration. In general, model changes take as
much or more time in the wind tunnel than the acquisition
of the aerodynamic data. The neural networks were there-
fore trained using data sets which contained various
numbers of flap configurations but all of the angles of
attack for each configuration. The accuracy of the net-
works was evaluated by computing the root-mean-square
(rms) error of each aerodynamic coefficient. The devia-
tions from the measured data were computed at each
angle of attack for a given flap configuration from which
the rms errors were computed. The errors should be low
for configurations included in the training sets. Compari-
son of the network outputs for configurations on which
the networks were not trained with experimental results
yields an indication of the predictive capability of the
network model.

Results

As expected, when the aerodynamic data for all of the
20 flap configurations were used to train the network
models, the resulting accuracy was excellent for all of the
configurations. Figure 4 shows a summary of the errors in
the aerodynamic coefficients for all of the flap configura-
tions. The shaded squares in the figure show which
configurations were included in the training set (all 20 in
this case) and the bars show the rms errors for the three
aerodynamic coefficients. A bar as tall as a square corre-
sponds to an rms error of 0.0100. The experimental data
had uncertainties (standard deviation) of ∆CL = ±0.0035,
∆CD = ±0.0015, and ∆CM = ±0.0025. The unshaded bars
in the lower-right corner of the figure show the uncer-
tainties for all of the wind tunnel data. The network errors
are well within the experimental uncertainty for all of the
configurations in the matrix. The network errors for the
two configurations not included in the full training set are
also quite small:

for LEF/TEF = 15°/10°:
CLerr = 0.0020, CDerr = 0.0002, CMerr = 0.0003

for LEF/TEF = 30°/11.5°:
CLerr = 0.0016, CDerr = 0.0007, CMerr = 0.0015

A comparison of the measured and predicted aero-
dynamic coefficients is shown in figures 5(a)–5(d) for
the 15°/10° configuration using the full training set of
figure 4. The lift coefficient was very well predicted for
angles of attack less than about 10° (fig. 5(a)), and the
corresponding drag and pitching-moment coefficients
are also accurately predicted (figs. 5(b) and 5(c), respec-
tively). The L/D is accurately captured by the network
model for lift coefficients below that for maximum L/D,
whereas beyond L/Dmax it is slightly overpredicted.
The values of L/D determined directly from the neural-
network model and from the network CL and CD values
are nearly identical.

Several other subsets of the measured aerodynamic data
were used to train the network. The training set shown in
figure 6 is one way to reduce the data requirements and
would be sufficient if the aerodynamics of this airplane
model changed in a linear fashion with flap deflections.
This training set contains 40% of the flap configurations
contained in the full training set. As is apparent from the
error bars, the network model in this case did a relatively
poor job of predicting the performance of flap configura-
tions for which it had not been trained. The predicted
and measured aerodynamic coefficients for the 30°/20°
configuration (not in the training set) are shown in
figure 7. The agreement is poor, as expected from the
rms errors shown in figure 6.
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Better selections of the configurations contained in the
training set improve the accuracy of the model while still
reducing the number of configurations relative to the full
training set. Figure 8 shows one such selection and the
resulting rms errors. This training set contains 60% of the
flap configurations and predicts the aerodynamics of the
configurations that are not in the training set to within the
experimental error (unfilled rectangles in the lower-right
box of fig. 8). Figure 9 shows the rms errors for a training
set which contains only 50% of the flap configurations
and still maintains predictive accuracy that is better than
the experimental error. Figure 10 shows comparisons of
the computed and measured aerodynamic coefficients for
the 34°/30° flap configuration. The agreement is good in
spite of the fact that the network is actually extrapolating
outside of the range of the training set for both the
leading- and trailing-edge flap deflections. Although
risky, extrapolating slightly beyond the range of trained
inputs did not lead to large errors in this particular
example. The accuracy of the predictions obtained using
the training sets shown in figures 8 and 9 demonstrates
that neural-network techniques can be used to reduce the
amount of wind tunnel data required to obtain an accurate
representation of the aerodynamics of a given wind tunnel
model.

Analysis of wind tunnel data after, or even during, a test
is another area in which neural networks can significantly
accelerate the aircraft design processes. An example of
this use is in two different optimization procedures
performed on the SHARC model. One of the objectives
of the test was to examine the effect of vortex generators
mounted onto various parts of the wing on the L/D
behavior across a range of angles of attack appropriate for
sustained maneuvers. A performance index was defined
which, for a given combination of LEF/TEF, is given by:

Performance index = (L/D)dC

(L/D)dC
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A graphical representation of the performance index is
shown in figure 11. Finding the flap geometry which
maximizes this performance index involved significant
data analysis by a test engineer. The neural-network
model, on the other hand, provided a very quick analysis
to determine the flap angles which maximize this
parameter and at the same time provided a more complete

picture of how flap deflections influence performance.
A contour plot of the performance index as a function
of leading- and trailing-edge flap deflections generated
using the neural model is shown in figure 12. The neural
network predicted that the performance index is
maximized when LEF/TEF = 24°/13°.

The second optimization performed on the SHARC
model was to develop the schedule of leading- and
trailing-edge flap angles which maximized the L/D at
every angle of attack. This would normally be done by
cross plotting L/D data from several runs and finding
which leading- and trailing-edge flap-angle combination
generates the highest L/D at various angles of attack. An
example is shown in figure 13. The network model was
used to directly determine the flap-angle combinations
that maximize L/D at any desired angle of attack. The
network prediction for the optimized L/D versus angle of
attack is also shown in figure 13. The schedules for the
leading- and trailing-edge flap angles are shown in
figure 14 for the network model and from the traditional
method of cross plotting the wind tunnel data. It is noted
that there is little difference between the two flap
schedules.

Conclusions

Wind tunnel testing of new airplane designs accounts for
a significant part of the cost of the aerodynamic develop-
ment process. Methods of reducing the amount of data
acquired during a wind tunnel test would immediately
reduce the cost of testing. The ability of neural-network
models to fill in a design space for the flap deflections of
a large-scale generic fighter model from sparse data was
demonstrated. In the example shown, network models of
the lift, drag, and pitching-moment coefficients as well as
the lift-to-drag ratio produced accurate predictions when
trained using only 50% of the data contained in the basic
configuration test matrix. In addition, the resulting neural
model of the aerodynamics provides a simple way to
interrogate the entire design space allowing very flexible
examination of configuration alternatives. The optimiza-
tion of flap deflections using the network model to
maximize the lift-to-drag ratio was demonstrated
providing the same results as the traditional method of
cross plotting data from numerous configurations. It is
hoped that this technique will be employed during wind
tunnel tests to determine when sufficient data have been
acquired.
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Output Layer
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Hidden Layer

Figure 1. Simple neural network.
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deflection, LEF

Trailing-edge flap
deflection, TEF

(segments deflected
together)

Figure 2. Plan view of SHARC model showing control
surfaces tested.
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CL, CD, CM, or L/D

Input Layer

Hidden Layer

LEF TEFα

Figure 3. Neural-network architecture used for modeling aerodynamics.
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Errors for LEF/TEF = 15°/10°: CLerr = 0.0020, CDerr = 0.0002, CMerr = 0.0003.
Errors for LEF/TEF = 30°/11.5°: CLerr = 0.0016, CDerr = 0.0007, CMerr = 0.0015.
Averaged rms errors for all geometries in training set: CLerr = 0.0013, CDerr = 0.0002, CMerr = 0.0003.

Figure 4. Summary of root-mean-square (rms) error from neural-network computation of aerodynamic coefficients.
Shaded boxes indicate which flap configurations were contained in the training data. Experimental rms errors are shown
as open bars in lower-left box.
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Figure 5. Comparison of predicted and measured aerodynamic characteristics for LEF/TEF = 15°/10°. Training set used,
shown in figure 4, does not include this configuration.
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Figure 6. Training set which assumes linear aerodynamic behavior for leading- and trailing-edge flap deflections.
Note that the error bars for pitching moment represent only one-half of that error.
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Figure 7. Comparison of predicted and measured aerodynamic characteristics for LEF/TEF = 30°/20°. Training set (fig. 6)
does not contain this configuration.
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Figure 8. Error estimates for training set which accounts for nonlinear aerodynamic behavior of the SHARC model.
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Figure 9. Error estimates for training set containing only 50% of the flap configurations which still accounts for nonlinear
aerodynamic behavior of the SHARC model.
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Figure 10. Comparison of predicted and measured aerodynamic characteristics for LEF/TEF = 34°/30°. Training set
(fig. 9) does not contain this configuration.
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Reducing Wind Tunnel Data Requirements Using Neural Networks

James C. Ross, Charles C. Jorgenson, and Magnus Norgaard*

The use of neural networks to minimize the amount of data required to completely define the aero-
dynamic performance of a wind tunnel model is examined. The accuracy requirements for commercial wind
tunnel test data are very severe and are difficult to reproduce using neural networks. For the current work,
multiple input, single output networks were trained using a Levenberg-Marquardt algorithm for each of the
aerodynamic coefficients. When applied to the aerodynamics of a 55% scale model of a U.S. Air Force/
NASA generic fighter configuration, this scheme provided accurate models of the lift, drag, and pitching-
moment coefficients. Using only 50% of the data acquired during the wind tunnel test, the trained neural
network had a predictive accuracy equal to or better than the accuracy of the experimental measurements.
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